Refine Your Search

Topic

Author

Search Results

Technical Paper

Structural Analysis Based Sensor Placement for Diagnosis of Clutch Faults in Automatic Transmissions

2018-04-03
2018-01-1357
This paper describes a systematic approach to identify the best sensor combination by performing sensor placement analysis to detect and isolate clutch stuck-off faults in Automatic Transmissions (AT) based on structural analysis. When an engaged clutch in the AT loses pressure during operation, it is classified as a clutch stuck-off fault. AT can enter in neutral state because of these faults; causing loss of power at wheels. Identifying the sensors to detect and isolate these faults is important in the early stage of the AT development. A universal approach to develop a structural model of an AT is presented based on the kinematic relationships of the planetary gear set elements. Sensor placement analysis is then performed to determine the sensor locations to detect and isolate the clutch stuck-off faults using speed sensors and clutch pressure sensors. The proposed approach is then applied to a 10-Speed AT to demonstrate its effectiveness.
Technical Paper

Structure-Borne Noise Measures and Their Correlation to Sound Radiation over a Broad Range of Frequencies

2003-05-05
2003-01-1450
Structure-borne noise within vehicle structures is often transmitted in a multi-dimensional manner and thus the vibro-acoustic model(s) of automotive powertrain or chassis must incorporate longitudinal and transverse (flexural) motions as well as their couplings. In this article, we employ the continuous system theory to model a typical vibration isolator (say the engine mounting system) and a compliant receiver that could simulate the body structure. The powertrain source is however assumed to be rigid, and both harmonic force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the frequency domain based mobility method is utilized to synthesize the overall system. Contributions of both in-plane and flexural motions to structure-borne and radiated noise are incorporated. Two examples are considered to illustrate the methodology.
Technical Paper

Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2–D PIV and 3–D PTV

1999-03-01
1999-01-0957
The evolution of the flow field inside an IC engine during the intake stroke was studied using 2 different experimental techniques, namely the 2–D Particle Image Velocimetry (2–D PIV) and 3–D Particle Tracking Velocimetry (3–D PTV) techniques. Both studies were conducted using a water analog engine simulation rig. The head tested was a typical pent–roof head geometry with two intake valves and one exhaust valve, and the simulated engine operating point corresponded to an idle condition. For both the 2–D PIV and 3–D PTV experiments, high–speed CCD cameras were used to record the motion of the flow tracer particles. The camera frame rate was adjusted to correspond to 1/4° of crank angle (CA), hence ensuring excellent temporal resolution for velocity calculations. For the 2–D PIV experiment, the flow field was illuminated by an Argon–ion laser with laser–sheet forming optics and this laser sheet was introduced through a transparent piston crown to illuminate the center tumble plane.
Technical Paper

Testing and Validation of a Belted Alternator System for a Post-Transmission Parallel PHEV for the EcoCAR 3 Competition

2017-03-28
2017-01-1263
The Ohio State University EcoCAR 3 team is building a plug-in hybrid electric vehicle (PHEV) post-transmission parallel 2016 Chevrolet Camaro. With the end-goal of improving fuel economy and reducing tail pipe emissions, the Ohio State Camaro has been fitted with a 32 kW alternator-starter belt coupled to a 119 kW 2.0L GDI I4 engine that runs on 85% ethanol (E85). The belted alternator starter (BAS) which aids engine start-stop operation, series mode and torque assist, is powered by an 18.9 kWh Lithium Iron Phosphate energy storage system, and controlled by a DC-AC inverter/controller. This report details the modeling, calibration, testing and validation work done by the Ohio State team to fast track development of the BAS system in Year 2 of the competition.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

The Application of Piezoceramic Actuation to Direct Fuel Injection

2003-09-16
2003-32-0001
With increasing demands to reduce emissions from internal combustion engines, engine manufacturers are forced to seek out new technology. One such technology employed primarily in the diesel and two-stroke engine community is direct-injection (DI). Direct injection has shown promising results in reduction of CO and NOx for both two- and four-stroke engines. While having been used for several years in the diesel industry, direct injection has been scrutinized for an inability to meet future requirements to reduce particulate matter emissions. Direct injection has also came under fire for complicating fuel delivery systems, thus making it cost prohibitive for small utility engine manufacturers. Recent research shows that the application of piezo-driven actuators has a positive effect on soot formation reduction for diesel engines and as this paper will distinguish, has the ability to simplify direct injection fuel delivery systems in general.
Technical Paper

The Ohio State University Automated Highway System Demonstration Vehicle

1998-02-23
980855
The Ohio State University Center for Intelligent Transportation Research (CITR) has developed three automated vehicles demonstrating advanced cruise control, automated steering control for lane keeping, and autonomous behavior including automated stopping and lane changes in reaction to other vehicles. Various sensors were used, including a radar reflective stripe system and a vision based system for lane position sensing, a radar system and a scanning laser rangefinding system for the detection of objects ahead of the vehicle, and various supporting sensors including side looking radars and an angular rate gyroscope. These vehicles were demonstrated at the National Automated Highway System Consortium (NAHSC) 1997 Technical Feasibility Demonstration in a scenario involving mixed autonomous and manually driven vehicles. This paper describes the demonstration, the vehicle sensing, control, and computational hardware, and the vehicle control software.
Journal Article

Tuned Silencer Using Adaptive Variable Volume Resonator

2008-04-14
2008-01-0896
In this study, an adaptive control mechanism is proposed to design a silencer applying variable volume resonator concept. Transfer matrix method is used to calculate the transmission loss and evaluate acoustic performance of the proposed mechanism. Effects of damping factor, area ratio of expansion chambers are examined first for a fixed double chamber resonator. Then a two-dimensional search scheme is developed to find optimal piston position that achieves maximum transmission loss with minimal effort. This study shows that the proposed adaptive silencer can efficiently attenuate noise when comparing with a conventional fixed resonator.
Technical Paper

Use of Robust DOB/CDOB Compensation to Improve Autonomous Vehicle Path Following Performance in the Presence of Model Uncertainty, CAN Bus Delays and External Disturbances

2018-04-03
2018-01-1086
Autonomous vehicle technology has been developing rapidly in recent years. Vehicle parametric uncertainty in the vehicle model, variable time delays in the CAN bus based sensor and actuator command interfaces, changes in vehicle sped, sensitivity to external disturbances like side wind and changes in road friction coefficient are factors that affect autonomous driving systems like they have affected ADAS and active safety systems in the past. This paper presents a robust control architecture for automated driving systems for handling the abovementioned problems. A path tracking control system is chosen as the proof-of-concept demonstration application in this paper. A disturbance observer (DOB) is embedded within the steering to path error automated driving loop to handle uncertain parameters such as vehicle mass, vehicle velocities and road friction coefficient and to reject yaw moment disturbances.
Technical Paper

Utilization of ADAS for Improving Performance of Coasting in Neutral

2018-04-03
2018-01-0603
It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than Deceleration Fuel Cut-Off (DFCO) - which exists in all current vehicle powertrain controllers - can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Technical Paper

Vehicle Dynamics Model for Simulation Use with Autoware.AI on ROS

2024-04-09
2024-01-1970
This research focused on developing a methodology for a vehicle dynamics model of a passenger vehicle outfitted with an aftermarket Automated Driving System software package using only literature and track based results. This package consisted of Autoware.AI (Autoware ®) operating on Robot Operating System 1 (ROS™) with C++ and Python ®. Initial focus was understanding the basics of ROS and how to implement test scenarios in Python to characterize the control systems and dynamics of the vehicle. As understanding of the system continued to develop, test scenarios were adapted to better fit system characterization goals with identification of system configuration limits. Trends from on-track testing were identified and paired with first-order linear systems to simulate physical vehicle responses to given command inputs. Sub-models were developed and simulated in MATLAB ® with command inputs from on-track testing.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

Vehicle to Vehicle Interaction Maneuvers Choreographed with an Automated Test Driver

2009-04-20
2009-01-0440
Modern passenger cars are being equipped with advanced driver assistance systems such as lane departure warning, collision avoidance systems, adaptive cruise control, etc. Testing for operation and effectiveness of these warning systems involves interaction between vehicles. While dealing with multiple moving vehicles, obtaining discriminatory results is difficult due to the difficulty in minimizing variations in vehicle separation and other parameters. This paper describes test strategies involving an automated test driver interacting with another moving vehicle. The autonomous vehicle controls its state (including position and speed) with respect to the target vehicle. Choreographed maneuvers such as chasing and overtaking can be performed with high accuracy and repeatability that even professional drivers have difficulty achieving. The system is also demonstrated to be usable in crash testing.
Technical Paper

Vehicle-in-Virtual-Environment Method for ADAS and Connected and Automated Driving Function Development, Demonstration and Evaluation

2024-04-09
2024-01-1967
The current approach for new Advanced Driver Assistance System (ADAS) and Connected and Automated Driving (CAD) function development involves a significant amount of public road testing which is inefficient due to the number miles that need to be driven for rare and extreme events to take place, thereby being very costly also, and unsafe as the rest of the road users become involuntary test subjects. A new development, evaluation and demonstration method for safe, efficient, and repeatable development, demonstration and evaluation of ADAS and CAD functions called Vehicle-in-Virtual –Environment (VVE) was recently introduced as a solution to this problem. The vehicle is operated in a large, empty, and flat area during VVE while its localization and perception sensor data is fed from the virtual environment with other traffic and rare and extreme events being generated as needed.
X